

Praxis Core Math

Some of the Basics

Fractions

Multiplication: Multiply the fraction straight across with numerator times numerator and denominator times denominator. Ex.

 $\frac{3}{6} \times \frac{5}{2} = \frac{3 \times 5}{6 \times 2} = \frac{15}{12}$

Division: To divide fractions we can flip the second fraction and turn the problem into a multiplication problem.

Ex.

$$\frac{5}{8} \div \frac{3}{2} = \frac{5}{8} \times \frac{2}{3} = \frac{10}{24}$$

Addition & Subtraction: We need to have a common denominator to add and subtract fractions.

Ex.

Ex.

x	<i>x</i>	x(2)	x
5	$-\frac{10}{10} =$	$\overline{5(2)}^{-1}$	10
		2 <i>x x</i>	
	=	$\overline{10}$ $\overline{10}$ $\overline{10}$	
		2x - x	x
	=	10 =	$\overline{10}$

Simplification: To simplify fractions, write out the prime factorization of each number and cancel out any prime factors that are present in the top and bottom of the fraction.

 $\frac{24}{45} = \frac{2 \times 2 \times 2 \times 3}{3 \times 3 \times 5} = \frac{8}{15}$

<u>Ratios</u>

All ratios can be rewritten as a fraction. Add the numbers of the ratio to get the denominator and use the individual numbers as numerators. Ex.

For a recipe the ratio of water to flour for is 2:3.

$$2 + 3 = 5$$

What fraction is water? $\frac{2}{5}$

What fraction is flour? $\frac{3}{5}$

Please Excuse My Dear Aunt Sally Sequence of Operations Parentheses () Exponents ² Multiplication and Division ×÷ Addition and Subtraction +-

Units of Measurement				
Imperial Length: 1 foot (ft.) = 12 inches (in.) 1 yard (yd.) = 3 ft. 1 mile (mi.) = 1760 yd. = 5280 ft. Volume: 1 cup (c.) = 8 fluid ounces (fl. oz.) 1 quart (qt.) = 2 c. 1 pint (pt.) = 2 qt. 1 gallon (gal.) = 2 pt. Weight: 1 pound (lb.) = 16 ounces (oz.) 1 ton (t.) = 2240 lb.	Metrickilo-1,000Thousandhector-100Hundreddeca-10Ten(base)1Onedeci1Tenthcenti01Hundredthmilli001ThousandthLength: Meter (m)			
Conversions between Metric and Imperial: 1 in. ≈ 2.5 cm (\approx diameter of quarter) 1 mi ≈ 1.6 km 1 qt. ≈ 1 l 1 oz. ≈ 28 g (\approx weight of 5 quarters) 2.2 lbs. ≈ 1 kg (\approx weight of a dictionary)				
ExponentsExponentsAn exponent represents the numberof times the base is multiplied byitself.Ex. $2^3=2\times2\times2=8$ Any number to the 0 exponent equals1Ex. $2^0=54^0=13^0=1$ Negative exponents can be rewrittenas fractions with positive exponents.Ex. $4^{-2} = \frac{1}{4^2} = \frac{1}{16}$	Exponent OperationsAdd the exponents when multiplying the same base. Ex. $3^4 \times 3^5 = 3^9$ Subtract the exponents when dividing the same base. Ex. $\frac{6^8}{6^3} = 6^5$ When a base with an exponent is raised to another exponents, multiply the exponents together.Ex. $(3^4)^5 = 3^{20}$			

Praxis Core Math

Some of the Basics

<u>Roots</u>

A root is the opposite of an exponent. When given an expression like $\sqrt{9}$, think about what number squared is equal to 9. That is $x^2 = 9$, thus $\sqrt{9} = 3$.

Whenever you have only the radical, $\sqrt{}$, that means the square roots. Any other root will index the number on the radical, such as $\sqrt[3]{64}$. This is asking for the cube root of 64 which we can think of as $x^3 = 64$, so $\sqrt[3]{64} = 4$.

<u>Translating words to</u>

<u>Numbers</u> Phrases of Addition:

- Increased by
 - Sum of
 - More than
 - Exceeds by
 - Exceeds by

Phrases of Subtraction:

- Decreased by
- Difference of
- Less/fewer than
- Diminished by

Phrases of Multiplication:

- Times
- Times the
- Sum/Difference
- Product of

Phrases of Equals

- Is
- Result is
- Results in

Ex. Find the number to make the sentence true: Three times the difference of a number and seven is fifteen. $3 \times (x-7) = 15$

3(x - 7) = 15 3x - 21 = 15 3x = 36x = 12

<u>Geometry</u>

It is more important to understand the principles of geometry and how 2D and 3D shapes relate to one another than to memorize a formulas, because this test is notorious for coming up with new shapes that you haven't seen before in a practice test.

Area is two-dimensional (2D) meaning that to find the area of something you generally multiple something by something.

Square (S x S) or Rectangle (L x W);

Triangle (1/2 L x W) because a triangle is half a square/rectangle.

Area of circle is (πr^2) therefore r x r (and always multiple by π for a circle)

Volume is three-dimensional (3D) meaning that to find the volume of something you generally multiple the area of the base times the height.

Cube is (S x S) x H; Cylinder (πr^2) x H

Three pyramids can fit into a cube therefore you multiple the cube volume times 1/3 to get the volume of a pyramid 1/3 (S x S) x H $\,$

Three cones can fit into a cylinder therefore you multiple the cylinder volume times 1/3 to get the volume of a cone 1/3 (π r²) x H